Mark Scheme (Results) January 2011

GCE

GCE Core Mathematics C1 (6663) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.
For further information, please call our GCE line on 08445760025 , our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http:// www.edexcel.com/ Aboutus/ contact-us/

January 2011
Publications Code USO26232
All the material in this publication is copyright
© Edexcel Ltd 2011

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless ot herwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod-benefit of doubt
- ft -follow through
- the symbol fwill be used for correct ft
- cao-correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw -ignore subsequent working
- awrt -answers which round to
- SC: special case
- oe-or equivalent (and appropriate)
- dep-dependent
- indep -independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \square The second mark is dependent on gaining the first mark

Question Number	Scheme Marks
2.	$\begin{aligned} & \left(\int=\right) \frac{12 x^{6}}{6},-\frac{3 x^{3}}{3},+\frac{4 x^{\frac{4}{3}}}{\frac{4}{3}},(+c) \\ & =2 x^{6}-x^{3}+3 x^{\frac{4}{3}}+c \end{aligned}$ M1A1,A1, A1
	Notes
	M1 for some attempt to integrate: $x^{n} \rightarrow x^{n+1}$ i.e $a x^{6}$ or $a x^{3}$ or $a x^{\frac{4}{3}}$ or $a x^{\frac{1}{3}}$, where a is a non zero constant $1^{\text {st }}$ A1 for $\frac{12 x^{6}}{6}$ or better $2^{\text {nd }} \mathrm{A} 1$ for $-\frac{3 x^{3}}{3}$ or better $3^{\text {rd }} \mathrm{A} 1$ for $\frac{4 x^{\frac{4}{3}}}{\frac{4}{3}}$ or better $4^{\text {th }} \mathrm{A} 1$ for each term correct and simplified and the $+c$ occurring in the final answer

Question Number	Scheme	Marks
3.	$\begin{aligned} & \frac{5-2 \sqrt{3}}{\sqrt{3}-1} \times \frac{(\sqrt{3}+1)}{(\sqrt{3}+1)} \\ & =\frac{\cdots}{2} \end{aligned}$ $\text { denominator of } 2$ $\text { Numerator }=5 \sqrt{3}+5-2 \sqrt{3} \sqrt{3}-2 \sqrt{3}$ So $\frac{5-2 \sqrt{3}}{\sqrt{3}-1}=-\frac{1}{2}+\frac{3}{2} \sqrt{3}$	M1 A1 M1 A1
	Alternative: $(p+q \sqrt{3})(\sqrt{3}-1)=5-2 \sqrt{3}$, and form simultaneous equations in p and q $-p+3 q=5 \text { and } p-q=-2$ Solve simultaneous equations to give $p=-\frac{1}{2}$ and $q=\frac{3}{2}$.	M1 A1 M1 A1
	Notes	
	$1^{\text {st }} \mathrm{M} 1$ for multiplying numerator and denominator by same correct expression $1^{\text {st }} \mathrm{A} 1$ for a correct denominator as a single number (NB depends on M mark) $2^{\text {nd }}$ M1 for an attempt to multiply the numerator by $(\sqrt{3} \pm 1)$ and get 4 terms with at least 2 correct. $2^{\text {nd }} \mathrm{A} 1$ for the answer as written or $p=-\frac{1}{2}$ and $q=\frac{3}{2}$. Allow -0.5 and 1.5 . (Apply isw if correct answer seen, then slip writing $p=, q=$)	
	Answer only (very unlikely) is full marks if correct - no part marks	

Question Number	Scheme	Marks
4 (a)	$\left(a_{2}=\right) 6-c$	B1 (1)
(b)	$\begin{gathered} a_{3}=3\left(\text { their } a_{2}\right)-c \quad(=18-4 c) \\ a_{1}+a_{2}+a_{3}=2+"(6-c) "+"(18-4 c) " \\ " 26-5 c "=0 \end{gathered}$ So $\quad c=5.2$	M1 M1 A1ft A1 o.a.e (4)
	Notes	
(b)	$1^{\text {st }}$ M1 for attempting a_{3}. Can follow through their answer to (a) but it must be an expression in c. $2^{\text {nd }} \mathrm{M} 1$ for an attempt to find the sum $a_{1}+a_{2}+a_{3}$ must see evidence of sum $1^{\text {st }} \mathrm{A} 1 \mathrm{ft}$ for their sum put equal to 0 . Follow through their values but answer must be in the form $p+q c=0$ A1 - accept any correct equivalent answer	

Question Number	Scheme	Marks
5. (a)		B1 B1 B1 (3)
(b)	Horizontal translation so crosses the x-axis at $(1,0)$ New equation is $(y=) \frac{x \pm 1}{(x \pm 1)-2}$ When $x=0 \quad y=$ $=\frac{1}{3}$	B1 M1 M1 A1 (4)
	Notes	
(b)	B1 for point (1,0) identified - this may be marked on the sketch as 1 on x axis. Accept $x=1$. $1^{\text {st }} \mathrm{M} 1$ for attempt at new equation and either numerator or denominator correct $2^{\text {nd }}$ M1 for setting $x=0$ in their new equation and solving as far as $y=\ldots$ A1 for $\frac{1}{3}$ or exact equivalent. Must see $y=\frac{1}{3}$ or $\left(0, \frac{1}{3}\right)$ or point marked on y-axis. Alternative $\mathrm{f}(-1)=\frac{-1}{-1-2}=\frac{1}{3}$ scores M1M1A0 unless $x=0$ is seen or they write the point as $\left(0, \frac{1}{3}\right.$) or give $y=1 / 3$ Answers only: $x=1, y=1 / 3$ is full marks as is $(1,0)(0,1 / 3)$ Just 1 and $1 / 3$ is B0 M1 M1 A0 Special case : Translates 1 unit to left (a) B0, B1, B0 (b) Mark (b) as before May score B0 M1 M1 A0 so $3 / 7$ or may ignore sketch and start again scoring full marks for this part.	

Question Number	Scheme	Marks
7.	$\begin{aligned} & (\mathrm{f}(x)=) \frac{12 x^{3}}{3}-\frac{8 x^{2}}{2}+x(+c) \\ & (\mathrm{f}(-1)=0 \Rightarrow) 0=4 \times(-1)-4 \times 1-1+c \\ & c=\underline{9} \\ & {\left[\mathrm{f}(x)=4 x^{3}-4 x^{2}+x+9\right]} \end{aligned}$	M1 A1 A1 M1 A1
	Notes	
	$1^{\text {st }}$ M1 for an attempt to integrate $x^{n} \rightarrow x^{n+1}$ $1^{\text {st }}$ A1 for at least 2 terms in x correct - needn't be simplified, ignore $+c$ $2^{\text {nd }}$ A1 for all the terms in x correct but they need not be simplified. No need for $+c$ $2^{\text {nd }}$ M1 for using $x=-1$ and $y=0$ to form a linear equation in c. No $+c$ gets M0A0 $3^{\text {rd }} \mathrm{A} 1$ for $c=9$. Final form of $\mathrm{f}(x)$ is not required.	
$8 \text {. }$ (a)	$\begin{array}{cl} b^{2}-4 a c=(k-3)^{2}-4(3-2 k) \\ k^{2}-6 k+9-4(3-2 k)>0 & \text { or } \\ k^{2}+2 k-3>0 & \\ \hline \end{array}$	M1 M1 A1cso (3)
(b)	$\qquad(k+3)(k-1)[=0]$ Critical values are (choosing "outside" region) $k=1$ or -3 $\underline{k>1}$ or $k<-3$	M1 A1 M1 A1 cao (4)
	Notes	
(a)	$\begin{array}{\|ll} \hline 1^{\text {st }} \text { M1 for attempt to find } b^{2}-4 a c \text { with one of } b \text { or } c \text { correct } \\ 2^{\text {nd }} \text { M1 for a correct inequality symbol and an attempt to expand. } \\ \text { A1cso } & \text { no incorrect working seen } \\ \hline \end{array}$	
(b)	$1^{\text {st }}$ M1 for an attempt to factorize or solve leading to $k=$ (2 values) $2^{\text {nd }}$ M1 for a method that leads them to choose the "outside" region. Can follow through their critical values. $2^{\text {nd }}$ A1 Allow "," instead of "or" \geq loses the final A1 $1<k<-3$ scores M1A0 unless a correct version is seen before or after this one.	

Question Number	Scheme	Marks
$10 .$ (a)	(i) correct shape (-ve cubic)Crossing at $(-2,0)$ Through the origin Crossing at $(3,0)$$\times$(ii) 2 branches in correct quadrants not crossing axes One intersection with cubic on each branch	B1 B1 B1 B1 B1 B1 (6)
(b)	" 2 " solutions Since only " 2 " intersections	B1ft dB1ft (2)
	Notes	
(b)	B1ft for a value that is compatible with their sketch dB 1 ft This mark is dependent on the value being compatible with their sketch. For a comment relating the number of solutions to the number of intersections. [Only allow 0,2 or 4]	
11. (a)	$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) \frac{3}{2} x^{2}-\frac{27}{2} x^{\frac{1}{2}}-8 x^{-2}$	M1A1A1A1 (4)
(b)	$\begin{aligned} x=4 \Rightarrow y & =\frac{1}{2} \times 64-9 \times 2^{3}+\frac{8}{4}+30 \\ & =32-72+2+30 \end{aligned}$	M1 A1cso
(c)	$7 y-2 x+64=0$	M1 A1 M1 M1A1ft A1 (6)

Question Number	Scheme	Marks
	Notes	
(a)	$1^{\text {st }}$ M1 for an attempt to differentiate $x^{n} \rightarrow x^{n-1}$ $1^{\text {st }} \mathrm{A} 1$ for one correct term in x $2^{\text {nd }} \mathrm{A} 1$ for 2 terms in x correct $3^{\text {rd }}$ A1 for all correct x terms. No 30 term and no $+c$.	
(b)	M1 \quad for substituting $x=4$ into $y=$ and attempting $4^{\frac{3}{2}}$ A1 note this is a printed answer	
(c)	$1^{\text {st }} \mathrm{M} 1$ Substitute $\mathrm{x}=4$ into y^{\prime} (allow slips) A1 $2^{\text {nd }} \mathrm{M} 1$ Obtains -3.5 or equivalent for correct use of the perpendicular gradient rule using their gradient. (May be slip doing the division) Their gradient must have come from y^{\prime} $3^{\text {rd }} \mathrm{M} 1$ for an attempt at equation of tangent or normal at P $2^{\text {nd }} \mathrm{A} 1 \mathrm{ft}$ for correct use of their changed gradient to find normal at P. Depends on $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }} \mathrm{Ms}$ $3^{\text {rd }} \mathrm{A} 1$ for any equivalent form with integer coefficients	

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN
Telephone 01623467467
Fax 01623450481

Email publications@inneydirect.com
Order Code US026232 January 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/ quals

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

